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A new index, i.e., the periphery representation of the projection of a molecule from 3D space to a 2D plane is 
described. The results, correlation with toxicity of substituted nitrobenzenes, obtained by using periphery descrip-
tors are much better than that obtained by using the areas (i.e., shadows) of projections of the compounds. Even 
better results were achieved by using the combination of periphery descriptors and the projections areas as well as 
the indicated variable K reflecting the action of group NO2 position on the benzene ring. 
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Introduction 

Quantitative structure-activity relationship studies 
have been applied widely for the prediction of organic 
compounds. Since the 1960’s, enormous efforts have 
been made by various investigators to develop quantita-
tive parameters. During this period, Hansch and his 
co-workers1,2 made important breakthrough for biologi-
cal QSAR with electronic, stereo and hydrophobic pa-
rameters to be known as the extra-thermodynamic ap-
proach. 

Since the 1980’s, several methods considering the 
reaction between three-dimensional (3D) molecular 
structure and receptor in QSAR have appeared. These 
methods are all called 3D-QSAR approaches. At present, 
the most widely used 3D-QSAR technique is CoMFA 
(comparative molecular field analysis).3 However, re-
cently, it was found that CoMFA alone can not obtain 
sufficiently strong equation to allow confident predic-
tion for amino-benzenes. When some other parameters, 
such as heat of molecular formation of the compounds, 
were introduced into the CoMFA model, the results 
were improved greatly. It gives us a hint that a better 
description for molecular structures will give out a bet-
ter prediction model, and this hint challenged us to look 
for other method of the projection areas of molecules in 
3D space for 3D-QSAR. It is surprised that much better 
results than that obtained by using CoMFA were 
achieved.4 We continue the research to describe the pe-
ripheries of the projections of molecules in 3D space for 
3D-QSAR along this way. The satisfactory results can 
also be obtained. In the present study, two methods will 
be related, i.e. the method for the projection of a mole-

cule, and the method for description of the periphery of 
a projection. Furthermore, the details about how to com-
bine the above two methods for a real data set is be 
given in this paper. 

Principles of the methods 

The molecular shape profiles 

Molecular shape is an important chemical concept. It 
has been used for QSAR. Some methods have been sug-
gested for the representation of molecular shape.5,6 We 
try to utilize the method suggested by Randi�,7 thus we 
here briefly introduce this algorithm as follows. 

For catacondensed benzenoids all carbon atoms are 
on the molecular periphery. The simplest structure is 
benzene. In the case of benzene the (geometry) distance 
matrix is: 
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From this matrix, the row (or column) sums: R1, R2,  
R6, can be obtained, and the average of row sums is R
(R1 R2 R6)/6, where 6 is the number of atoms in 
the structure. If all the elements in matrix (1) are 
squared, we can obtain matrix (2), 2D, 
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Again we consider the row sums and construct the av-
erage row sum: 2R (2R1

2R2
2R6)/6. Similarly, 

we can obtain 3R, 4R, . In order to reduce the role of 
ever interesting powers, the averaged row sum is 
normalized as below,  

0R, 1R, 2R/2!, 3R/3!, 0P, 1P, 2P, 3P, 
�

The sequence R for the first six powers of the matrix 
becomes 

R 6, 7.46410162, 12, 20.3923049, 36, 65.1769145, 

120 

where the first item, 6 is the size of the system, and then 
R is normalized, P 6, 7.46410162, 6, 3.39871748, 1.5, 
0.543140954, 0.166666667. 

Orthogonal projection 

In many cases, the biological activity or physico-
chemical property of interest is related to the 3D shape 
of the tested compounds. The shape parameters de-
scribed here are molecular orthogonal projections. The 
projections were calculated by using a two-dimensional 
version of the point-encoded algorithm described by 
Stouch and Jurs.8 In order to perform the calculation, 
the 3D atomic coordinates of the compounds must be 
available. These coordinates were computed by using 
SYBYL option BUILD and the conformations of the 
compounds were minimized by using the ENERGY 
MINIMIZE option (Tripos Associates, 1699 S. Hanley 
Road, Suite 303, St. Louis, MO63144). Once the mo-
lecular geometry has been defined, the structure is ori-
ented in three-dimensional space according to some de-
fined criterion. A molecule, represented by the 3D co-
ordinates of its atoms and their van der Waals radii, is 
placed in a 3D grid of arbitrary density (in this article, 
the density is 4 bits per linear nanometer). Each point of 
intersection of the grid is checked to see if it lies within 
the molecule. If so, the point is put into a state, “1”, if 
not so, the point is put into a state, “0”. The molecule is 
then viewed from three orthogonal directions defined by 
the X, Y and Z coordinate axes. For each perspective, the 
coordinates are compressed into the plane defined by 
the remaining two axes. For the perspective along the 
Z-axis, the Z coordinates would be disregarded and the 
molecule projected onto the X-Y plane. A simple anal-
ogy, from which the name was derived, would be to 
obtain the shadow, which results from directing parallel 
rays of light along the axis of perspective. The area of 

this projection will be used as an index of molecular 
shape. 

The first index calculated is the area of the shadow 
of the molecule projected on a plane defined by the X 
and Y axes (S1). The second index is the area projected 
onto the Y-Z plane (S2), and the third index is the area 
projected onto the X-Z plane (S3). Each area is also 
normalized by dividing the index by the area of the rec-
tangle defined by the maximum dimensions of the pro-
jection on the plane, i.e. S4, S5 and S6, were obtained. 
Another index is the area of the rectangle of the maxi-
mum dimensions of the projected on the X-Y plane (S7). 
The seven indexes derived from three orthogonal pro-
jections, which are approached by Jurs,9 are adopted and 
called shadow indexes in this article. Furthermore, the 
volume parameter, V, is calculated based on the point 
encoded. In this work, the density of a grid is 4 divi-
sions per linear angstrom, therefore, the volume repre-
sented by a “1” code is (1/4)3 1.5625 10 5 nm 3. 
The volume,8 V of the entire molecule is computed by 
summing up all the “1” and multiplied by 1.5625  
10 5. 

Periphery description of the projection of a molecule 

The projection areas of a molecule have been used 
by us4,10 for QSAR. The existing problem is that the 
different shapes of the projections may possess the same 
area. Consequently, we represent the peripheries of the 
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to replace the projection areas for QSAR, i.e. the com-
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study. For example, the shape of nitrobenzene projected 
on Y-Z plane is shown in Figure 1. Since the interior 
points of the projection play no role for the shape profile, 
we considered only the points on the periphery of a 
projection. Because the shape of a molecule is the or-
thogonal projection, therefore all the points including 
the points of the periphery on the intersections of the 
squares, so the geometry distances can be obtained eas-
ily. As an example, the distance matrix in the rectangle 
in Figure 1 is  
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Figure 1  The shape of nitrobenzene projected on Y-Z plane. 
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�	�� ���orithm, six powers  
were calculated for the different projections on X-Y, Y-Z 
and X-Z planes, respectively. The total number of the 
parameters is 18. These parameters are: 

61 2 3 4 5 1 2 3

4 5 6 1 2 3 4 5 6

, , , , , ,  , , , 

, , , , , , , , 

xy xy xy xy xy xy yz yz yz

yz yz yz xz xz xz xz xz xz

P P P P P P P P P

P P P P P P P P P

 

Indicated descriptors 

The number and the positions of group NO2 on ben-
zene ring play important roles for their activities. In or-
der to reflect the influences, indicated descriptor, K, is 
introduced, 

0 5                                (mononitrobenzene)

1 0                                  ( -dinitrobenzene)

3 0                           ( - or -dinitrobenzene)

.

K . m
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Experimental 

Data 

In this research, the toxicity LC50 of nitrobenzenes is 
the molar concentration of a nitrobenzene necessary to 
lead to death of the half tested fathead minnows11 and
log LC50 is defined as the toxic descriptor. The nitro-
benzene skeleton is 

 

The different substitutions and their toxic activities are 
shown in Table 1. log LC50 (obsd) is obtained from 
literature 11, and log LC50 (cald) is calculated by ar-
tificial neural network -BFGS, and Diff. represent the 
difference between log LC50 (obsd) and log LC50 

(cald). 

Selection of the descriptors 

The descriptors (i.e., features) were derived from the 
structures of compounds, and used to create the predic-
tive models. Abstraction of the features is the key step 
for a QSAR/QSPR study. 

A good equation for structure and activity should 
possess high correlation coefficient R, low standard de-
viation S, and least variables. To this end, objective fea-
ture selection was done to weed out those descriptors 
that provide minimal or redundant information. The 
descriptors were analyzed using leaps-and-bounds re-
gression.12 Because in the subsequent statistical analysis 
we want to find the best subsets of the descriptors, i.e. 
when we want to take one, two, or three descriptors, we 
should find which one or one of the combinations is the 
best for the predictive model. Leaps-and-bounds regres- 

sion provides us an effective approach, which can give 
out the answers quickly. This method is based on the 
fundamental inequality, 

RSS (A) RSS (B) 

where A is any set of independent variables and B is a 
subset of A. The number of subsets evaluated in a search 
for the best subset regression can be restricted by the 
use of the inequality. For example, set A1 contains 3 
variables with RSS, 596, set A2 contains 4 variables with 
RSS, 605. Thus, all the subsets of A2 will be ignored, 
because of the regressions using these subsets with RSS 
greater than that for A2, and also for A1. 

Results and discussion 

Multiple regression 

To compare projection areas (i.e., shadows) and 
peripheries of the shadows for QSAR of nitrobenzenes, 
we will give out the results obtained by us in different 
cases.  

Using variables V, S1, S2, S3, S4, S5, S6 and S7 

Variables V, S1, S2, S3, S4, S5, S6 and S7 were as-
signed 1, 2, , 8, respectively. From statistical view-
point, the ratio of the number of sample (N) to the 
number of variables (M) should not be too low. Usually, 
it is recommended that N/M 5. In the situation of this 
study, we have 35 samples, so M can not be great than 7. 
Table 2 shows the results of leaps-and-bounds regres-
sion for the best combinations of the 8 descriptors. For 
example, the best one-variable selection is 1 (V). The 
best two-variable selection is the combination of 1 and 7 
(S6), and the combination of 2 (S1), 6 (S5) and 8(S7) is 
the best for three-variable selection, and so on. From 
this Table, we can see that 6-variable combination in-
cluding variables 1, 2, 3, 4, 6 and 8 is the best one. 

log LC50 4.19 2.62 V 3.41 S1 1.03 S2

0.58 S3 0.24 S5 1.58 S7 (1) 

R 0.841, F 11.27, S 0.45, N 35 

where R is correlation coefficient, F is significance test, 
S denotes standard deviation, and N stands for the num-
ber of samples. 

Using variables V, S1, S2, S3, S4, S5, S6, S7 and K  

Because the above equation is not sufficiently 
strong to allow confident prediction, thus, the indicated 
variable K was added. The leaps-and-bounds regression 
results are shown in Table 3. This Table revealed that to 
put together the correlation coefficients, significance 
tests, and standard deviations, 7-variable combination 
including variables 1, 2, 3, 5, 6, 7 and 9 is the best one. 
The regression model is 
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Table 1  Substituted nitrobenzenes and their toxicity 

No. R1 R2 R3 R4 R5 log LC50 (obsd) log LC50 (calcd)   Diff. 

1 CH3 H H H H 3.57 3.67 0.10 

2 H CH3 H H H 3.63 3.55   0.08 

3 H H CH3 H H 3.76 3.89 0.13 

4 NO2 H H H H 5.45 5.40   0.05 

5 H NO2 H H H 4.38 4.42 0.04 

6 H H NO2 H H 5.22 5.25 0.03 

7 CH3 H H H NO2 5.01 5.10 0.09 

8 H NO2 CH3 H H 3.75 3.89 0.14 

9 CH3 H NO2 H H 5.15 5.20 0.05 

10 CH3 NO2 H H H 3.99 3.99   0.00 

11 NO2 H CH3 H H 5.08 5.06   0.02 

12 H CH3 H NO2 H 3.91 3.93 0.02 

13 H NO2 H NO2 H 5.29 5.27 0.02 

14 H H H H H 3.02 3.21 0.19 

15 NH2 H H H H 3.70 3.51   0.19 

16a H NO2 NH2 H H 4.07 4.05   0.02 

17 H H OH H H 3.36 3.46 0.10 

18 H H F H H 3.70 3.63   0.07 

19 H NO2 CH3 NO2 H 4.88 4.89 0.01 

20 NO2 CH3 NO2 H H 6.37 6.37 0.00 

21 CH3 NH2 H H H 3.48 3.64 0.16 

22 H CH3 NH2 H H 3.24 3.32 0.08 

23 H NH2 CH3 H H 3.35 3.34   0.01 

24a NH2 CH3 H H H 3.80 3.57   0.23 

25 NH2 H CH3 H H 3.80 3.50   0.30 

26 NH2 H H CH3 H 3.79 3.73   0.06 

27a OH H H NH2 H 3.65 3.75 0.10 

28 CH3 H H NH2 H 3.77 3.76   0.01 

29 H NO2 OH H H 4.04 3.91   0.13 

30 H NO2 CH3 NH2 H 4.14 4.13   0.01 

31 CH3 NH2 NO2 H H 5.34 5.21   0.13 

32 CH3 NO2 NH2 H H 4.26 4.28 0.02 

33 NH2 NO2 CH3 H H 4.21 4.27 0.06 

34 NH2 H NO2 CH3 H 4.18 4.27 0.09 

35a CH3 NO2 H NH2 H 4.46 4.37   0.09 
a Samples of the test set. 

log LC50 4.19 0.58 K 1.12 V 2.66 S1

0.12 S3 0.65 S4 0.32 S5 1.77

S7  (2) 

R 0.946, F 32.88, S 0.28, N 35 

Obviously, the results obtained by Eq. (2) are much bet-
ter than that obtained by Eq. (1). 

Using variable xyP1 , xyP2 , xyP3 , xyP4 , xyP5 , xyP6 , 

yzP1 , yzP2 , yzP3 , yzP4 , yzP5 , yzP6 , xzP1 , xzP2 , xzP3 , 

xzP4 , xzP5 , xzP6  

These variables were labeled from 1 to 18. For the 
selection of variables, leaps-and-bounds regression was 
also performed. The results are shown in Table 4. From 
this Table the results obtained by 7-variable combina-
tion are better than that obtained by 6-variable combina-
tion. Thus, we took 7-variable combination, and the  
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Table 2  Results of leaps-and-bounds regression for best com-
binations of the descriptorsa 

No. Descriptor R S F 

1 1 0.690 0.56 30.05 

2 1,7 0.782 0.49 25.13 

3 2, 6, 8 0.826 0.45 22.21 

4 1, 2, 6, 8 0.827 0.46 16.28 

5 1, 2, 3, 4, 5 0.834 0.46 13.25 

6 1, 2, 3, 4, 6, 8 0.841 0.45 11.27 

7 1, 2, 3, 4, 5, 6, 8 0.842 0.46 9.39 
a The variables are V, S1, S2, S3, S4, S5, S6 and S7, which corre-
spond to the numbers 1, 2, 3, …, 8, respectively. 

Table 3  Results of leaps-and-bounds regression for best com-
binations of the descriptorsa 

No. Descriptor R S F 

1 1 0.912 0.32 163.69 

2 1, 2 0.920 0.31 88.35 

3 1, 3, 8 0.929 0.29 65.57 

4 1, 3, 5, 8 0.932 0.29 49.46 

5 1, 2, 3, 7, 9 0.936 0.29 41.17 

6 1, 2, 3, 6, 7, 9 0.941 0.28 36.03 

7 1, 2, 3, 5, 6, 7, 9 0.946 0.28 32.88 

8 1, 2, 3, 5, 6, 7, 8, 9 0.946 0.28 27.83 
a The variables are K, V, S1, S2, S3, S4, S5, S6 and S7, which corre-
spond to the numbers 1, 2, 3, …, 9, separately. 

Table 4  Results of leaps-and-bounds regression for best com-
binations of the descriptorsa 

No. Descriptor R S F 

1 3 0.633 0.60 22.08 

2 7, 13 0.671 0.58 13.09 

3 6, 13, 14 0.767 0.51 14.74 

4 6, 16, 17,18 0.873 0.40 24.05 

5 6, 13, 15, 16, 17 0.901 0.36 24.87 

6 5, 6, 13, 14, 15, 17 0.916 0.34 24.19 

7 4, 5, 6, 13, 14, 15, 16 0.921 0.33 21.62 

8 7, 8, 11, 12, 13, 14, 16, 18 0.928 0.32 20.15 

9 
6, 7, 8, 10, 12, 13, 14, 17,  

18 
0.941 0.30 21.62 

a The variables are xyP1 , xyP2 , xyP3 , xyP4 , xyP5 , xyP6 , yzP1 , 

yzP2 , yzP3 , yzP4 , yzP5 , yzP6 , xzP1 , xzP2 , xzP3 , xzP4 , xzP5 , 

xzP6 , which correspond to the numbers 1, 2, 3, …, 18, separately. 

regression model is  

log LC50 4.19 28.36 4Pxy 63.67 5Pxy 36.00
6Pxy 63.46 1Pxz 224.29 2Pxz

256.60 3Pxz 95.58 4Pxz (3) 

R 0.921, F 21.62, S 0.33, N 35 

As case (3), if variable K is added, the correlation coef-
ficient is R 0.943. 

Using the combination of all the variables 

We tried to further improve the predictive results, 
thus the combination of all the variables, i.e. the shad-
ows, the peripheries of the shadows, V and K was ob-
served. The different best combinations of the variables 
were calculated also by using leaps-and-bounds regres-
sion analysis, and the results are shown in Table 5. 
Though the better results can be obtained by using the 
8-variable best combination, the 7-variable best combi-
nation was selected in this study, because the rule of 
thumb, i.e., N/M 5 was followed. The regression 
model is 

log LC50 4.19 1.50 S2 1.78 S3 0.18 S6

1.99 S7 0.52 K 3.32 1Pyz 2.67
1Pxz  (4) 

R 0.967, F 56.12, S 0.22, N 35 

Fortunately, the results are greatly improved. It is 
interesting that all the shadows relate to the toxicity 
negatively, wherever all the peripheries relate to the 
toxicity positively. This means that compounds pos-
sessing lower S2, S3, S6 and S7 or higher 1

yzP  and 1
xzP  

as well as K will be more toxic. 

Table 5  Results of leaps-and-bounds regression for best com-
binations of the descriptorsa 

No. Descriptor R S F 

1 9 0.912 0.32 163.69 

2 1, 9 0.920 0.31 88.35 

3 7, 9, 10 0.930 0.29 66.19 

4 

5 

3, 7, 9, 16 

4, 8, 9, 16, 22 

0.937 

0.959 

0.28 

0.23 

53.59 

65.73 

7 3, 4, 7, 8, 9, 16, 22 0.967 0.22 56.12 

8 3, 4, 6, 8, 9, 11, 16, 22 0.971 0.21 53.51 

9 3, 4, 7, 8, 9, 17, 18, 19, 22 0.972 0.21 48.21 
a The variables are V, S1, S2, S3, S4, S5, S6, S7, K, xyP1 , xyP2 , 

xyP3 , xyP4 , xyP5 , xyP6 , yzP1 , yzP2 , yzP3 , yzP4 , yzP5 , 

yzP6 , xzP1 , xzP2 , xzP3 , xzP4 , xzP5 , xzP6 , which correspond to 
the numbers 1, 2, 3, …, 27, separately. 

Neural networks 

In recent years, artificial neural networks have been 
used widely. Among the neural network learning algo-
rithms, the back-propagation (BP) method is one of the 
most commonly used methods. The drawback of BP is 
that the training processes slowly, because the gradi-
ent-descent algorithm is usually used for minimizing the 
sum-squared-error. In this research, the BFGS quasi- 
Newton method was used. The advantages of using the 
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BFGS method are that specifying rate or momentum is 
not necessary and training processes much more rap-
idly.13 

The input nodes of the neural network are as the 
same as case (4) i.e., S2, S3, S6, S7, K, 1

yzP , 1
xzP . The 

number of the output neuron is one. To avoid over- 
training, the test set was used to monitor the training 
process for networks, that is, during the training of the 
network, the performance was monitored by predicting 
the values for the compounds in the test set. As long as 
test set results were improved, training was continued. 
However, when the test set results ceased to improve, 
the training was stopped. The results indicate that this 
method is an effective approach to avoid over-training. 

Consequently, the entire data set was divided into 
two groups: 31 compounds as the training set and 4 
compounds as the test set. As a usual rule of the thumb, 
the weights and bases should be less than the samples in 
number, thus the model achieved by the network is sta-
tionary. Therefore, the number of the hidden neurons 
should not be greater than 3. The experiments showed 
that in the situations of 1, 2 and 3 hidden neurons, better 
results could be obtained by using 3 hidden neurons. So 
the architecture of an over network was 7 3 1. The 
results obtained by neural network are R 0.990, F
1608.56 and S 0.12. Obviously, these are much better 
than those obtained by using multiple regression analy-
sis. 

The toxic activities of the 35 compounds in this pa-
per were calculated using the model obtained in this part, 
as shown in Table 1. These indicate that the largest ab-
solute error for compound 25 is 0.30, the corresponding 
relative error is 7.9% (Table 1). The toxic activities es-
timated by the QSAR model being plotted vs. the toxic 
activities observed are shown in Figure 2. 

 

Figure 2  The toxic activities estimated by the QSAR model 
being plotted vs. the toxic activities observed. 

Conclusion 

Biological activity or physicochemical property of 
interest is often related to the 3D features of the test 
compounds. Because the different shapes may possess 
the same area, consequently, the periphery of a projec-
tion on a plane was described based on the algorithm 
�
�������������
�	����
���	����������	�����������������s-
tem, i.e., to the studies on QSAR for nitrobenzenes. As 
we expected, the results obtained by using the represen-
tations of peripheries of the projections are much better 
than that obtained by using the projection areas. Espe-
cially by the combination of the peripheries with the 
shadows, and indicated variable K, quite excellent re-
sults were achieved. Periphery representation of a pro-
jection is an effective method for 3D QSAR. 
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